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Abstract: In this study, we performed dual-modality optical coherence tomography (OCT)
characterization (volumetric OCT imaging and quantitative optical coherence elastography)
on human breast tissue specimens. We trained and validated a U-Net for automatic image
segmentation. Our results demonstrated that U-Net segmentation can be used to assist clinical
diagnosis for breast cancer, and is a powerful enabling tool to advance our understanding of
the characteristics for breast tissue. Based on the results obtained from U-Net segmentation
of 3D OCT images, we demonstrated significant morphological heterogeneity in small breast
specimens acquired through diagnostic biopsy. We also found that breast specimens affected by
different pathologies had different structural characteristics. By correlating U-Net analysis of
structural OCT images with mechanical measurement provided by quantitative optical coherence
elastography, we showed that the change of mechanical properties in breast tissue is not directly
due to the change in the amount of dense or porous tissue.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Other than non-melanoma skin cancers, breast cancer is the most common cancer diagnosed in
women, and is one of the leading causes of cancer related death in women around the world and
in the United States [1,2]. Various medical imaging technologies (mammography, ultrasound,
and MRI) are utilized for breast cancer screening, diagnosis, image guided intervention, and
surgical guidance. Optical coherence tomography (OCT), a 3D imaging modality based on low
coherence interferometry, is a promising technology for breast tissue characterization, because
OCT allows in situ imaging of breast tissue through a handheld probe [3]. The unique advantage
of OCT in breast imaging derives from the fact that its imaging volume and spatial resolution
are similar to those of biopsy examination. Previous studies have demonstrated that OCT could
reveal morphological characteristics of breast tissues with different pathologies [4–12]. Despite
technological development in the past decade, it remains challenging for a human reader to
perform high level tissue characterization using OCT data in clinical tasks, such as differentiation
of tumor from normal breast tissue. First, breast tissues exhibits a wide range of morphological
features under OCT examination, while OCT data is affected by various noises including speckle
noise. In addition, state-of-the-art high-speed OCT engines generate a massive amount of data
that is prohibitively large for visual inspection on individual 2D images in many 3D data cubes. In
clinical management of breast cancer, there is an unmet need for automatic analysis of volumetric
OCT data and information extraction .

Segmentation, the image processing technique that divides pixels in an image into multiple
categories, can be used to analyze breast cancer OCT images, and advance OCT’s clinical
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applications in oncology. By dividing pixels in a volumetric OCT image into different categories,
a segmentation algorithm quantifies the amount of tissue belonging to different subtypes,
enables quantitative analysis of tissue morphology, and performs automatic cancer detection.
Various segmentation algorithms have been developed, based on spatial domain thresholding,
spatial frequency domain analysis, and texture analysis [13]. Segmentation based on amplitude
thresholding has suboptimal performance in analyzing breast OCT images. This is because the
amplitude of OCT signal is randomly modulated by multiplicative speckle noise and varies in
a large range regardless of tissue type. Segmentation based on spatial frequency analysis is
limited by the fact the breast tissue deforms easily. Segmentation through texture analysis is also
challenging, because characteristic features for different types of breast tissue can be found at
different spatial scales.

To address the unmet need for automatic segmentation of breast tissue in OCT imaging,
here we describe a deep learning approach that utilizes a U-Net configuration for OCT image
analysis. U-Net, a widely used convolutional neural network (CNN) architecture for biomedical
image segmentation, has the capability to segment biomedical images with a limited number
of training examples [14]. In OCT community, U-Net has been utilized to segment retina
images and skin images [15–18]. In this study, we manually annotated OCT images obtained
from human breast tissue specimens and trained a U-Net for automatic segmentation. We
classified pixels of OCT images into the following categories: porous tissue, dense tissue, void
area, air-tissue interface and background area. U-Net segmentation of breast OCT image has
not been systematically investigated before. In addition, we demonstrated for the first time to
the best of our knowledge, that U-Net segmentation enabled quantitative assessment of tissue
composition and heterogeneity in volumetric OCT images. Furthermore, Optical coherence
elastography (OCE) has demonstrated its clinical value in breast cancer management [19–25].
Here we combined U-Net analysis of OCT image with quantitative optical coherence elastography
(qOCE), and showed that cancer pathology changed the stiffness of tissue rather than the amount
of dense breast tissue. We believe that the clinical impacts of this study may include more
accurate characterization of core biopsy specimens obtained during image guided biopsy. Current
standards of care involve image guided acquisition of tissue via spring loaded or vacuum-assisted
core biopsy systems. Although considered highly accurate for most diagnostic criterion, these
methods may result in outcomes requiring additional tissue sampling such as insufficient sampling,
discordance with imaging, or a diagnosis of a "high-risk lesion" which may imply undersampling
of the lesion and a lack of sufficient tissue to render a cancer diagnosis [26]. With U-Net
segmentation performing point-of-care tissue characterization, the accuracy of tissue sampling
can be significantly improved.

The objective of this study was to demonstrate the potential of U-Net for clinical breast imaging,
and show the unique capability of U-Net to perform structural and functional analysis on 3D OCT
data. Therefore, we chose to use a typical network architecture. The optimization of network
architecture and training strategy will be our future work. This manuscript is organized as the
follows. We first describe our OCT imaging platform, protocol for patient data acquisition, and
the segmentation method. Afterwards, we present results in the performance of U-Net in tissue
segmentation, quantitative tissue characterization enabled by U-Net segmentation of 3D OCT
images, and quantitative dual modality analysis (OCT and qOCE) of breast tissues. We finally
summarize the manuscript with conclusion and discussion.

2. OCT imaging platform and data acquisition

We used a spectral domain OCT system for breast imaging. Details on the OCT system can
be found in our previous publications [27]. Briefly, the spectral domain OCT system uses a
super-luminescent diode (SLD) centered at 1310nm as its broadband source and uses a line scan
CMOS camera (SUI1024LDH2, Goodrich, 92 kHz line scan rate, 1024 array size) for signal
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detection. The output from the light source is split into the reference arm and the sample arm. In
the sample arm, a pair of galvanometer steers the light beam for two dimensional lateral scanning.
A workstation computer (Dell Precision T7600) with a general purpose graphic processing units
(GPU, NVidia GeForce 780) is used for real-time signal processing. Software developed in house
(C++ with CUDA) is used to control and synchronize individual devices (camera, galvo, and
GPU), manage data streaming, and perform image reconstruction. The sample arm of the OCT
system uses a scanning lens (LSM04, Thorlabs) that provides a 36µm lateral resolution. The
lateral field of view (FOV) is depends on the voltage applied to the galvo and is approximately
2mm in lateral dimension. For 3D imaging, the OCT engine provides a 7.5µm axial resolution,
2.5mm depth imaging range, and >95dB sensitivity. We also performed quantitative evaluation
of the mechanical properties of the tissue using a qOCE instrument [28,29]. Before tissue
compression, the qOCE probe is translated axially to have full contact with the tissue. The
qOCE instrument uses a thin probe to compress the tissue, measures the reaction force (F) with
a calibrated fiber-optic force sensor integrated into the probe shaft, collects OCT signals from
the tissue under compression to track depth resolved displacement (D(z)), and quantitatively
evaluates the mechanical properties of the tissue using the ratio between the stress (F/A where
A represents the area of the probe tip and A≈ 2.5mm2 ) and strain (dD(z)/dz). To control the
amount of compression, the qOCE probe attaches to a linear motor. The motor is programed to
move a certain distance (0.2mm in this study) for mechanical characterization. We then obtain
the apparent Young’s modulus (E) of the sample: E = F/A

dD(z)/dz .
We performed OCT imaging on breast tissue specimens acquired from human subjects at

University Hospital, in Newark, NJ, the primary academic medical center of Rutgers, New Jersey
Medical School. This prospective study was approved by the institutional review board at Rutgers,
New Jersey Medical School. Informed written consent was obtained from each patient prior to
image guided tissue sampling and enrollment in the study. The biopsy recommendation had been
made based on the standard of care. All tissue samples were obtained via ultrasound guidance
utilizing a 14 gauge x 11 cm spring loaded core biopsy device (Achieve breast biopsy, Merit
Medical Systems Inc. South Jordan, UT) with 3-5 core samples obtained per lesion targeted for
sampling. Biopsies were performed by a board certified radiologist specializing in breast imaging
and intervention (Basil Hubbi, MD). Tissue samples were immediately characterized using OCT
analysis. We performed volumetric OCT imaging on tissue specimens. Afterwards, we performed
quantitative optical coherence elastography (qOCE) characterization. In qOCE measurement,
we compressed the tissue specimen with our qOCE probe, and simultaneously measure tissue
deformation and tissue/probe reaction force. Afterwards, the tissue was submitted in formalin for
standard of care histopathologic analysis (Mark Galan, MD). This study involved 13 patients.
Data obtained from each patient included volumetric OCT image (1024(x) × 500(y) × 512(z)),
qOCE measurement (force versus depth resolved displacement), histology and clinical diagnosis
based on histology.

3. U-Net for breast OCT image segmentation

We use convolutional neural network based on a U-Net architecture to generate the rules to
assign a label to every pixel of an OCT image. Normal breast consists of adipose tissue (fat),
stroma tissue and epithelial tissue. The microscopic morphology of breast tissue can also be
altered due to pathologies such as cancer or fibroadenoma. Nevertheless, OCT images of breast
tissue generally show either a porous texture or a dense speckle pattern [4–12]. Usually, normal
adipose breast tissue corresponds to a porous appearance with low scattering areas enclosed by
individual, well-circumscribed scattering borders. Other than adipose tissue, dense breast tissues
include stroma tissue, epithelial tissue and tumor. Area occupied by dense tissues generally has a
homogeneous, speckled appearance. Void area (air above the tissue, or empty cavities within
the tissue) does not create light scattering and shows no signal. Air-tissue boundary shows as
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a bright interface because of abrupt change in refractive index. In addition, background area
at a large imaging depth shows minimal signal amplitude because of light attenuation and loss
of coherence. Hence we manually label the OCT images using the above described categories
(porous tissue, dense tissue, void area, air-tissue interface and background area). The network is
trained iteratively using ground truth (OCT image in Fig. 1(a) along with manual segmentation
in Fig. 1(b)). The training process optimizes the automatic prediction of pixel type and the
trained U-Net allows automatic image segmentation, as illustrated in Fig. 1(c). To segment
an arbitrary input image, the probabilities for each pixel to belong to different categories are
calculated according to the trained U-net. The pixel is given the category that corresponds to the
highest probability.

Fig. 1. Illustration of Bscan OCT image (a), overlay of manual annotation on OCT image
(b) and segmentation obtained using U-net (c). Scale bars represent 250µm.

The architecture of our U-net is illustrated in Fig. 2. The input and output layer of the U-Net
have a dimension of 128 (axial) × 128 (lateral). In other words, the image input into the U-Net
has a dimension of 128 by 128, while the U-Net outputs a label for each pixel in the image. To
segment a larger image such as a Bscan with a dimension of 512 (axial) × 1024 (lateral), one
must divide image into multiple 128 × 128 patches and perform U-Net segmentation in each
patch. The dimension of the image patch is chosen to mitigate the memory demand to train the
network. If the U-Net is designed to directly segment a 512 (axial) × 1024 (lateral) Bscan, the
memory required is extremely large and the training takes a much longer time. As shown in
Fig. 2, the U-net consists of a contracting encoder branch and an expanding decoder branch. The
encoder branch has four encoder stages and extracts multiscale features from the input image. On
the other hand, the decoder branch has four decoder stages and generates a spatially resolved
prediction of individual pixels for segmentation. As illustrated in Fig. 2, each encoder stage
consists of five layers (3 × 3 convolution layer, ReLU activation layer, 3 × 3 convolution layer,
ReLU activation layer, and max pooling layer). Each decoder stage consists of seven layers (up
convolution layer, up ReLU layer, concatenation layer, 3 × 3 convolution layer, ReLU layer, 3 × 3
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convolution layer and ReLU layer). Notably, the up convolution layer that performs transposed
convolution generates more coefficients for the next layer based on numbers in the current layer
and can be considered as an upsampling layer. The up ReLU layer is an ordinary ReLU layer. The
1st, 2nd, 3rd, and 4th encoder and decoder stage have 64, 128, 256, and 512 features, respectively.

Fig. 2. Architecture of U-net used for breast OCT image segmentation

4. Results

4.1. U-Net training and validation

To train the U-Net, we generated ground truth by manually labeling OCT images. For each
data volume consisting of 500 Bscans, we selected 25 Bscans uniformly distributed within the
volume and labeled the pixels to be porous tissue, dense tissue, void area, air-tissue interface and
background area. With 13 data volumes from recruited patients, we have 325 labeled images
for training. These Bscans were further divided into smaller image patches with a dimension
of 128 × 128, resulting in 4550 patches for training. Notably, We only used 256 pixels in each
Ascans for the training, because pixels at a larger imaging depth are very noisy. We also cropped
Ascans at the beginning and the end of each Bscan, to eliminate signals affected by galvo scanning
artefacts. The accuracy of the U-Net was quantified by comparing the U-Net prediction of pixel
label and the ground truth pixel label. We empirically optimized the architecture and training
strategy for the U-Net. The U-Net with a satisfactory performance had 4 encoder/decoder
stages (Fig. 2), input/output dimension of 128 × 128, and was trained at an initial learning rate
of 10−4. The learning rate drop factor was 0.9 and the learning rate drop period was 1. We
used cross entropy as the loss function and used Adam optimization method. Separate sets of
Bscans were used for training, testing and validation. 90% of the data was used for training
and 10% of the data was used for validation during the training process. Table 1 shows the
segmentation accuracy for networks with different encoder/decoder stages (128×128 input/output
dimension and trained with an initial learning rate of 10−4). The network with 4 encoder/decoder
stages achieved the highest accuracy. Table 2 shows the segmentation accuracy for networks
with different input/output image dimensions (U-Net with 4 encoder/decoder stages and trained
at an initial learning rate of 10−4). The accuracy was optimized when image patches had a
dimension of 128 × 128. Table 3 shows the segmentation accuracy achieved under different
initial learning rate (U-Net with 4 encoder/decoder stages and trained with 128 × 128 patches).
The accuracy was optimized when the initial learning rate was 10−4. The U-Net was trained
in Matlab (Matlab 2019b), on graphic processing units (GPU-GTX1070). The training was
accomplished in approximately 14 minutes (a minibatch size of 10, iterated for 10 epochs). After
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determining the optimal hyperparameters, we trained U-Net and tested its accuracy using an
80%(training)/10%(validation)/10%(test) split to prevent overestimation of the accuracy. The
global test accuracy was approximately 89.10%, slightly worse than the best training accuracy
achieved. We also evaluated the accuracy for individual categories in Table 4.

Table 1. Global accuracy (percentage, %) for different
U-Net architectures

Number of stages 3 4 5

Training Accuracy 86.57 89.28 89.12

Table 2. Global accuracy (percentage, %) for training image patches with different dimensions

Dimension 16×16 48×48 96×96 112×112 128×128 144×144 192×192

Training Accuracy 71.25 84.63 85.82 82.96 89.28 87.06 82.09

Table 3. Global accuracy (percentage, %) for U-Net trained with
different initial learning rates

Learning rate 10−3 10−4 10−5

Training Accuracy 88.75 89.28 77.91

Table 4. Test accuracy (percentage, %) for different pixel categories

Category Air Interface Porous tissue Dense tissue Background

Accuracy 97.67 83.21 88.10 91.29 63.80

4.2. Breast OCT image analysis based on U-Net segmentation

We first demonstrate the need for U-Net to segment OCT images of breast tissue in Fig. 3. We
selected a Bscan centered at one of the 3D OCT data cube. The pixels of the image were manually
labeled to be porous tissue, dense tissue, void area, air-tissue interface and background area.
We obtained histogram for all the pixels in the image (blue curve in Fig. 3). We also obtained
histogram for pixels corresponding to only porous tissue (black curve in Fig. 3), and histogram
for pixels corresponding to only dense tissue (red curve in Fig. 3). Histograms for porous tissue
and dense tissue (black and red curves) overlap significantly and the histogram for the entire
image does not show seperate peaks corresponding to specific tissue type. This is because OCT
data is overwhelmingly affected by speckle noise that is approximately a Rayleigh distribution
[30]. Hence it is impractical to segment OCT images based on amplitude thresholding strategies.

We then demonstrate that U-Net segmentation of OCT image provides morphological charac-
terization of the sample, and the results are consistent with histology. Data shown in Fig. 4(a)
(Bscan image in x-z plane), (b) (enface image in x-y plane), (c) (U-Net segmentation result
overlaid with gray scale Bscan image) and (d) (histology image obtained with 40X magnification)
were obtained from a patient diagnosed as having invasive ductal carcinoma. We re-scaled the
images for display, such that the spatial sampling intervals in axial and lateral dimension are
identical and the scale bars are valid for both axial and lateral dimensions. We obtained OCT
data from our CUDA based software platform after k-linearization, fast Fourier transform, and
dynamic range compression through logarithm operation. We then turned the single precision
float number for each pixel to an 8-bit integer (color bars by gray scale OCT images). The
histology image (Fig. 4(d)) shows porous microarchitecture corresponding to adipose tissue,
as well as dense structure because of cancer invasion through the basement membrane. OCT
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Fig. 3. Histogram corresponding to all the pixels within the OCT Bscan (blue), histogram
corresponding to pixels labeled as porous tissue (black), and histogram corresponding to
pixels labeled as dense tissue (red)

images (Fig. 4(a) and (b)) clearly show porous structure corresponding to adipose tissue and
homogeneous speckle pattern corresponding to dense tissue (cancer). Data shown in Fig. 4(e)
(Bscan image in x-z plane), (f) (enface image in x-y plane), (g) (U-Net segmentation result
overlayed with gray scale Bscan image) and (h) (histology image) were obtained from a patient
diagnosed as having pseudoangiomatous stromal hyperplasia. The histology image (Fig. 4(h))
shows interanastomosing spaces in dense collagenous, keloid-like stroma, characteristic for the
specific pathology. OCT images (Fig. 4(e) and (f)) have a homogeneous speckled appearance
that is consistent with histology. Notably, We did not take the effort to make sure that two
images (OCT and histology) showed exactly the same location and achieve pixel wise correla-
tion. According to our approved protocol, OCT images were obtained immediately after tissue
acquisition. Afterwards, the tissue specimen was placed in formalin and later submitted for
histology. Following such a protocol, it was impractical to label the OCT imaging plane at a
tissue specimen acquired by 14 gauge core biopsy needle. However, the high-level morphological
features characterized by U-Net segmentation are consistent with the results of histology.

We further demonstrate the feasibility to perform high-level morphological analysis on
volumetric OCT data through U-Net segmentation. Results of 3D analysis shown in Fig. 5 and
results in Fig. 4(a)-(d) were obtained from the same patient diagnosed as having invasive ductal
carcinoma. Results of 3D analysis shown in Fig. 6 and results in Fig. 4(e)-(g) were obtained from
the same patient diagnosed as having pseudoangiomatous stromal hyperplasia. 3D OCT data
can be examined as a sequence of 2D Bscan images or a sequence of 2D enface images, which
does not allow direct characterization of 3D morphological features. Alternatively, an entire
OCT data cube can be viewed through volume rendering by projecting the three-dimensional
data to a two-dimensional plane, as illustrated in Fig. 5(a). However, due to the limited contrast
of OCT image, it is challenging to identify different types of tissue (porous tissue and dense
tissue) by examining the 3D rendering of OCT data. For example, 2D OCT image in Fig. 4(a)
clearly shows area with a porous appearance and area with a homogeneous speckled appearance,
while these morphological characteristics are not discernible in Fig. 5(a). U-Net enables the
extraction of high-level morphological information from volumetric OCT data, which is critical
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Fig. 4. (a) Bscan OCT image, (b) enface OCT image, (c) U-Net segmentation overlayed with
OCT image, and (d) histology image obtained from a patient diagnosed as having invasive
ductal carcinoma; (e) Bscan OCT image, (f) enface OCT image, (g) U-Net segmentation
overlayed with OCT image, and (h) histology image obtained from a patient diagnosed as
having pseudoangiomatous stromal hyperplasia. Scale bars represent 250µm.

for the application of OCT in clinical diagnosis. Using the volume data shown in Fig. 5(a), we
segmented all the Bscans with the trained U-Net and the segmentation results are 3D rendered in
Fig. 5(b). The volume rendered with tissue category labeling show dense tissue (cancer in red)
infiltrating into porous tissue (fat in green), which is consistent with the result show as 2D images
in Fig. 4(a). This is further illustrated in Fig. 5(c) and (d), which are volume renderings of pixels
identified as porous tissue and dense tissue. In addition, as illustrated in Fig. 5(e), quantitative
understanding of 3D characteristics of breast tissues can be obtained by further reducing the
results of U-Net segmentation. Using the results of U-Net segmentation, we calculated the
number of pixels corresponding to dense and porous breast tissues, for individual x-z planes
(Bscans), y-z planes, and x-y planes (enface), and show the ratio between pixel numbers for dense
and porous breast tissues in Fig. 5(e) (upper: x-z plane; middle: y-z plane; bottom: x-y plane).
Results in Fig. 5(e) suggest that the composition of breast tissue is heterogeneous even within a
small tissue specimen. Same observation can be made for U-Net enabled analysis of 3D OCT
image in Fig. 6.

In addition, we performed U-Net segmentation across specimens confirmed to have different
pathologies. For each breast specimen, we calculated the percentage of pixels belonging to
porous tissue and pixels belonging to dense tissue. For each patient, we estimated the percentage
of pixels corresponding to porous tissue and dense tissue in each Bscan (pporous(i) and pdense(i) for
the ith Bscan), and the average percentage for porous and dense tissue within the entire volume
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Fig. 5. Results of 3D analysis of OCT data obtained from patient with invasive ductal
carcinoma: (a) rendered 3D OCT data; (b) rendered 3D OCT data that is labeled based on
U-Net; (c) 3D rendering of pixels classified as porous tissue; (d) 3D rendering of pixels
classified as dense tissue; (e) the ratio between pixel numbers for dense and porous breast
tissues(upper: x-z plane; middle: y-z plane; bottom: x-y plane).

Fig. 6. Results of 3D analysis of OCT data obtained from patient with pseudoangiomatous
stromal hyperplasia: (a) rendered 3D OCT data; (b) rendered 3D OCT data that is labeled
based on U-Net; (c) 3D rendering of pixels classified as porous tissue; (d) 3D rendering of
pixels classified as dense tissue; (e) the ratio between pixel numbers for dense and porous
breast tissues(upper: x-z plane; middle: y-z plane; bottom: x-y plane).
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Pporous =
1

NBscan

∑︁NBscan
i=1 pporous(i) and Pdense =

1
NBscan

∑︁NBscan
i=1 pdense(i). Pporous and Pdense obtained

from 13 patients are shown as bars in Fig. 7. Notably, each tissue specimen was from an individual
patient. Specimens with the same pathology were from different patients. Figure 7 shows results
according to the chronological order of data acquisition. The malignant cases are highlighted
using the color red as the background. For different tissue specimens, the combined percentage of
porous and dense tissue was different, because of different amount of pixels corresponding to void
area or background. We also quantitatively evaluated how the number of pixels corresponding
to porous tissue or dense tissue varied across different Bscan frames using standard deviation:
σporous =

√︂
1

NBscan

∑︁NBscan
i=1 (pporous(i) − Pporous)2 and σdense =

√︂
1

NBscan

∑︁NBscan
i=1 (pdense(i) − Pdense)2,

shown as error bars in Fig. 7. Results in Fig. 7 demonstrate that the U-Net segmentation enables
the extraction of concise morphological information from massive 3D OCT image data, for
different types of tissue.

Fig. 7. The percentage of pixels classified as porous tissue and dense tissue by U-Net across
specimens with different pathologies (PASH is the abbreviation of Pseudoangiomatous
stromal hyperplasia).

U-Net segmentation allows quantitative assessment sample morphology and allows quantitative
assessment of functional properties of breast tissue. To demonstrate this, we performed dual
modality characterization of breast tissue. The same tissue specimen underwent volumetric
imaging and quantitative optical coherence elastography (qOCE) characterization. Our qOCE
instrument has been described in previous publications [28,29,31]. Here we analyzed data of
dual modality characterization (3D OCT and qOCE) obtained from three patients (marked by red
asterisk in Fig. 7). These tissue specimens were respectively diagnosed as benign fatty tissue,
fibroadenoma, and ductal carcinoma in situ (DCIS) in histology. For volumetric OCT data,
we used the U-Net to segment individual Bscans in the 3D data cube, and calculated the total
percentage of pixels corresponding to porous tissue and dense tissue in the entire volume. For
qOCE data, the instrument is calibrated in its force and displacement tracking capability [28].
We evaluated the apparent Young’s moduli (E) of the sample: E = F/A

dD(z)/dz . Figure 8(a) shows
the percentage of pixels classified as porous and dense tissue for each specimen, according to the
results of U-Net segmentation. Relatively, the specimen diagnosed as benign fatty tissue has
the least porous tissue because it contained a significant amount of benign dense tissue, while
the specimen diagnosed as DCIS has the most porous tissue. Figure 8(b) shows the apparent
Young’s moduli (Efat, Efibroadenoma and EDCIS) obtained from qOCE measurements for the same
tissue specimens. Our results suggest Efat<Efibroadenoma< EDCIS. Notably, these elasticity values
only represent an estimation of apparent Young’s moduli, because the measurement depends
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on the boundary condition of the measurement and the accuracy of force sensing calibration.
Nevertheless, the results obtained from the same calibrated instrument showed the relative
stiffness of the specimens. It is known that values of tissue stiffness reported in literature vary
significantly. It depends on the sample geometry, measurement methodology, and technique
utilized for stiffness assessment. Nevertheless, in terms of orders of magnitude, our results are
similar to values reported previous study [32]. According to Fig. 8(a), the DCIS specimen had
the largest percentage of porous tissue (or adipose tissue). It is generally believed that porous
breast tissue is less stiff compared to diseased breast tissue. Therefore, the specimen (DCIS)
containing the most porous tissue is anticipated to the smallest Young’s modulus. However,
qOCE measurement showed DCIS to have the largest stiffness (Fig. 8(b)). On the other hand,
the benign fatty specimen had the least percentage of porous tissue and the smallest stiffness.
According to our results, it can be derived that the altered stiffness of breast tissue is not directly
related to a larger volume occupied by morphologically dense tissue. Instead, the altered stiffness
may be due to the change in molecular composition of the tissue. Notably, the current qOCE
study was limited by the small number of specimens tested. Furthermore, the assessment of
tissue composition (percentage of porous and dense tissue) was affected by signal attenuation.

Fig. 8. (a) the number of pixels classified as porous and dense tissue for each specimen,
according to the results of U-Net segmentation; (b) apparent Young’s moduli measured
using quantitative optical coherence elastography.

5. Conclusion and discussion

In this study, we acquired tissue specimens from patients who underwent standard of care breast
biopsy procedures. We performed volumetric OCT imaging on these tissue specimens. We
manually labeled a subset of images (Bscans) in 3D data cubes. We used the results of manual
labeling as the ground truth to train a U-Net that was subsequently used in automatic tissue
segmentation. Our results showed that OCT imaging of breast tissue provided morphological
characteristics consistent with histology, and U-Net allowed accurate and robust segmentation
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of breast OCT images (Fig. 4). With U-Net segmentation, high-level understanding of tissue
morphology, such as the ratio between porous and dense breast tissue, can be extracted
quantitatively from volumetric image data and used to assist clinical diagnosis. In addition to
clinical impact, U-Net segmentation is a powerful enabling tool to advance our understanding
of the characteristics of breast tissue. U-Net analysis of 3D OCT data showed that the tissue
specimen was highly heterogeneous even within a small volume acquired by a core biopsy needle
(Fig. 5 and Fig. 6). Therefore, when OCT is used to perform in situ tissue characterization, a
sufficiently large volume must be interrogated to overcome the inherent heterogeneity of the
sample. In addition, specimens diagnosed as having different pathologies showed different
tissue composition (Fig. 7). Results in Fig. 7 represent new knowledge discovered through
U-Net segmentation. If the amount of porous tissue and dense tissue in a specimen can be
characterized in situ during biopsy, the radiologist can quickly rule out non-diagnostic sample
that contains predominantly porous tissue. Moreover, results in Fig. 7 suggest the composition of
breast tissue varies significantly and the anticipation that normal breast tissue generally has a
porous appearance in OCT image is inaccurate. The diagnostic capability of OCT can be largely
strengthen by combining morphological characterization with functional characterization, such
as qOCE measurement. We also correlated the results of U-Net analysis with the results of qOCE
measurement (Fig. 8 ). Our results showed that the change in tissue mechanical properties under
is not directly due to the difference in the amount of dense or porous tissue.

Similar to other AI approaches, U-Net analysis of 3D OCT data is currently limited in clinical
application by the diversity of breast pathology and the small number of participating patients.
Nevertheless, U-Net enables automatic, fast, robust, and quantitative morphological tissue
characterization through segmentation. In this study, we trained a U-Net that classifies pixels in
individual Bscans. An alternative deep learning approach for breast tissue characterization is to
train a convolutional neural network (CNN) to analyze an entire image and determine the tissue
type for diagnosis. If a sufficiently large image data base (images and ground truth diagnosis for
each image) is used for training, CNN can achieve very high diagnostic accuracy, as demonstrated
in dermatology [33]. However, we are limited by the small number of tissue specimens belonging
to individual pathology categories, while the training of a U-net is much easier with data we have.
In addition, U-Net can be potentially trained to segment malignant tissue from benign tissue.
However, this is a challenging task, because of limited training data available, large variety of
breast pathologies, diverse morphological features among normal breast tissues, and diverse
morphological features among pathological breast tissues.

We trained the U-Net using 2D images and used the U-Net to segment individual Bscans
images in a 3D volume. It is possible to train a U-Net that segments 3D images. However, we
established the ground truth for the training through manual annotation, and manual labeling of
3D data remains challenging. Moreover, U-Net for 3D segmentation has much more parameters
compared U-Net for 2D image segmentation. It requires extremely large space for storage and
takes a much longer time to train. To train the U-Net, we essentially taught the AI algorithm
the way humans perceive OCT image data. We chose to classify the pixels in an OCT image
into the following categories: porous tissue, dense tissue, void area, air-tissue interface and
background area, because these categories could be reliably and accurately identified through
human observation. Our experimental data suggested that normal fatty tissue (confirmed in
histology by pathologies) appeared to have a combination of a porous and dense appearance,
while other tissue could have a predominantly porous appearance in OCT image. Hence, each
of these categories defined in U-Net may correspond to histologically different tissues, which
may complicates clinical interpretation of U-Net data. Nevertheless, U-Net extracts valuable
high level information that is consistent with human observation. When only a small data set
is available for training, it is a common practice to perform transfer learning that builds CNNs
using architecture pretrained on large data sets [34]. In this study, we did not use transfer
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learning, because OCT images are significantly different from natural images such as ones in
ImageNet, in spatial and frequency domain characteristics. We trained our network from scratch
and our training strategy achieved satisfactory segmentation performance. We will investigate
the potential usage of transfer learning in OCT image analysis.
Funding. National Cancer Institute (1R15CA213092-01A1).
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